How to Program the Xport Botball Controller (XBC) using Xport Development Software
There are two ways (that I know of) to program the XBC. The easy way is to use Interactive C to program in C, to upload the C code to the XBC, and use its internal functions and logic to connect hardware devices into software. The hard way is to use verilog code to interface the hardware devices, use C++ to code the program, and upload both the verilog code and the C++ code to the XBC using Xport Development Software. Both ways have advantages and disadvantages.

The advantage of Interactive C is that it is very easy to use since many hardware interfacing functions are already defined for you and it has easy testing capability and uploading support. Also, Interactive C provides many functions to easily use the CMUCam. The disadvantages of Interactive C is that you are required to use its hardware interfacing functions, so you cannot connect custom devices with custom hardware description language code. For example, you would not be able to interface and use a computer mouse using Interactive C. Also, Interactive C has somewhat limited memory space and only provides support for C code, not C++, thus no classes.

Using Xport Development Software is almost the opposite. Advantages are that you get to use your own custom hardware descriptions and devices, you can use C++ for coding, and you have much more memory space to store your program’s code. Disadvantages are that you must define even the most basic devices in hardware descriptions yourself and you do not have easy testing, uploading, and debugging support.

Thus, if Interactive C provides you with support for all the hardware devices you plan to use and you can live without classes, use Interactive C (download from 
 HYPERLINK "http://www.botball.org/" 

www.botball.org
) and stop reading. However, if you cannot live without classes or you absolutely must have a certain custom hardware device, then you should continue reading to learn about how to use the Xport Development Software.

To use the Xport Development Software method, you will first need some tools. For starters, you will need a Cport programming cable. If you don’t have one, you may be able to get it from Charmed Labs, (www.charmedlabs.com) otherwise they should be able to tell you where to get one. Next you will need to download and install Cygwin and then also download and install the Xport Development Software. Both can be downloaded from Charmed Labs under the “downloads” section. Now you have the tools necessary to upload code to the XBC.


Now you will need to write some code to upload. First, you will need to write code in verilog, or some other hardware description language, to properly interact with any hardware devices you wish to use, such as motors, servos, sonar, and other sensors. Ideally, this should be performed by someone with an electrical computer engineering background. Once it is ready, you will need a hardware description language synthesizer, such as Xilinx, to convert it into a .bit file. Place this .bit file in a folder called “logic” to make things easier later. Now it is ready to be uploaded.


Next, you will need some C++ code to use the hardware devices. If you are unsure how to get started, check out the examples in the Xport Development Software examples folder. (should be C:\xport\examples) Some include files can be found in the include folder for you to use. This code should be stored in a new folder under the examples folder. The logic folder should also be placed within this new folder.

Once all the code is ready, you will need to create a makefile. I don’t know very much about makefiles, but I would recommend merely copying one of the makefiles that are used in the example program folders to your new folder. I would copy the makefile from the rcservo example, since it include lines for uploading the .bit logic files. To attempt to explain what I understand about makefiles, first open up the makefile from the rcservo example.

The first lines in this particular makefile set some macros. For instance, the very first line sets “TARGET” to be equal to “rcservo” which means that when you see “TARGET” used anywhere below, it will be replaced by “rcservo”. In this particular case, it is just used as the name for a few intermediate .bin and .elf files. These files are only created for uploading and can be deleted when finished so their names do not really matter much, but you can change the “TARGET” to be a name relevant to your program if you wish. The next line just holds the command line to execute the compiler you wish to use for your high-level code. This one uses the GNU g++ compiler, which compiles C++ code. The next line holds the names of all the source files within the folder. It does this in an interesting way by using a wildcard symbol (*) to obtain all files which end in .cxx. If your source files are .cpp files, you can change this to .cpp or you can change all your source files to .cxx. The last of the top four lines just creates a .o file for all .cxx files found in the folder. These .o files are only created for uploading, so they can be deleted after you have uploaded successfully. The next two lines contain flags used by the GNU compiler when compiling the code. Since I do not know much about these, let’s move on. The rest of the lines involve using the above information to upload the .bit file from the logic folder and to compile and upload the C++ code to the XBC through the Cport programming cable.

Now that everything is finally ready, connect the Cport programming cable to the XBC and to your computer. Open up the Xport Development Software, which should be in the start menu under “xport”. (Make sure you ran the xport shell and not cygwin.) You should see something similar to a dos prompt in a window. Right now, it should be defaulted to the xport directory. Type “cd examples” to change directory to the examples folder. Now you need to change directory to your new program folder. Type “cd foldername” where “foldername” is the name of your new folder. Now you should be ready to upload. Just start the process by typing “make”. This should access the makefile commands and begin compiling and then uploading your program to the XBC through the Cport programming cable.

If any errors occur, read them carefully to try to fix the problem. If an error occurred during the g++/.cxx lines, then it is a compiler error and thus likely an error in your C++ code. If an error occurred during xpcomm/.bin/logic line, then there is probably an error in your verilog code. (You may note that both of these error checks occur before any uploading occurs, so it is possible to use this program to check to see if your code compiles before you connect the XBC.) If an error occurred after this, it is usually a problem with the connection between the computer and the XBC, so just check to make sure the connection is good and try again and again.


Once the uploading is complete, you should be able to turn on the XBC and see your program actually running, provided it does anything visible. Congratulations, you are now ready to create complex hardware/software configurations using the XBC and the Xport Software Development Kit.
Devon Berry


5/3/06








